Definite Integration Question 415

Question: If $ \int _{\log 2}^{x}{\frac{du}{{{(e^{u}-1)}^{1/2}}}}=\frac{\pi }{6} $ , then $ e^{x}= $

[Orissa JEE 2005]

Options:

A) 1

B) 2

C) 4

D) -1

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int _{\log 2}^{x}{\frac{du}{{{(e^{u}-1)}^{1/2}}}}=\frac{\pi }{6} $

therefore $ \int_1^{\sqrt{e^{x}-1}}{\frac{2t}{1+t^{2}}}\ dt=\frac{\pi }{6} $ as $ e^{u}-1=t^{2} $

therefore $ 2({{\tan }^{-1}}t)_1^{\sqrt{e^{x}-1}}=\frac{\pi }{6} $

therefore $ {{\tan }^{-1}}\sqrt{e^{x}-1}-\frac{\pi }{4}=\frac{\pi }{12} $

therefore $ \sqrt{e^{x}-1}=\tan \frac{\pi }{3} $

therefore $ \sqrt{e^{x}-1}=\sqrt{3} $

therefore $ e^{x}=4 $ .