Definite Integration Question 418

Question: The area of the closed bounded by $ x=-1, $ $ y=0, $ $ y=x^{2}+x+1 $ , and the tangent to the curve $ y=x^{2}+x+1 $ at A(1,3) is

Options:

A) 4/3 sq. units

B) 7/3 sq. units

C) 7/6 sq. units

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given $ y=x^{2}+x+1={{( x+\frac{1}{2} )}^{2}}+\frac{3}{4} $
$ \Rightarrow y-\frac{3}{4}={{( x+\frac{1}{2} )}^{2}} $

This is a parabola with vertex at $ ( -\frac{1}{2},\frac{3}{4} ) $ and the curve is concave upwards.

$ y=x^{2}+x+1 $ or $ \frac{dy}{dx}=2x+1 $ or $ {{( \frac{dy}{dx} )} _{(1.3)}}=3 $

Equation of the tangent at $ A(1,3) $ is $ y=3x $ Required area = Area ABDMN $ - $ Area ONA Now, area ABDMN $ =\int\limits _{-1}^{1}{(x^{2}+x+1)dx} $

$ =2\int\limits_0^{1}{(x^{2}+1)=\frac{8}{3}} $ Area of ONA $ =\frac{1}{2}\times 1\times 3=\frac{3}{2}. $
$ \therefore $ Required area $ =\frac{8}{3}-\frac{3}{2} $

$ =\frac{16-9}{6}=\frac{7}{6} $ sq. units.