Definite Integration Question 418

Question: The area of the closed bounded by $ x=-1, $ $ y=0, $ $ y=x^{2}+x+1 $ , and the tangent to the curve $ y=x^{2}+x+1 $ at A(1,3) is

Options:

A) 4/3 sq. units

B) 7/3 sq. units

C) 7/6 sq. units

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Given $ y=x^{2}+x+1={{( x+\frac{1}{2} )}^{2}}+\frac{3}{4} $
$ \Rightarrow y-\frac{3}{4}={{( x+\frac{1}{2} )}^{2}} $

This is a parabola with vertex at $ ( -\frac{1}{2},\frac{3}{4} ) $ and the curve is concave upwards.

$ y=x^{2}+x+1 $ or $ \frac{dy}{dx}=2x+1 $ or $ {{( \frac{dy}{dx} )} _{(1.3)}}=3 $

Equation of the tangent at $ A(1,3) $ is $ y=3x $ Required area = Area ABDMN $ - $ Area ONA Now, area ABDMN $ =\int\limits _{-1}^{1}{(x^{2}+x+1)dx} $

$ =2\int\limits_0^{1}{(x^{2}+1)=\frac{8}{3}} $ Area of ONA $ =\frac{1}{2}\times 1\times 3=\frac{3}{2}. $
$ \therefore $ Required area $ =\frac{8}{3}-\frac{3}{2} $

$ =\frac{16-9}{6}=\frac{7}{6} $ sq. units.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें