Definite Integration Question 426

Question: The area enclosed by the curve $ y=\sqrt{4-x^{2}}, $

$ y\ge \sqrt{2}\sin ( \frac{x\pi }{2\sqrt{2}} ) $ , and the y-axis divides the x-axis in the ratio

Options:

A) $ \frac{{{\pi }^{2}}-8}{{{\pi }^{2}}+8} $

B) $ \frac{{{\pi }^{2}}-4}{{{\pi }^{2}}+4} $

C) $ \frac{\pi -4}{\pi -4} $

D) $ \frac{2{{\pi }^{2}}}{2\pi +{{\pi }^{2}}-8} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ y=\sqrt{4-x^{2}},y=\sqrt{2}\sin ( \frac{x\pi }{2\sqrt{2}} ) $ intersect at $ x=\sqrt{2} $ Area to the left of y-axis is $ \pi $ Area to the right of y-axis $ =\int\limits_0^{\sqrt{2}}{( \sqrt{4-x^{2}}-\sqrt{2}\sin \frac{x\pi }{2\sqrt{2}} )dx} $

$ =( \frac{x\sqrt{4-x^{2}}}{2}+\frac{4}{2}{{\sin }^{-1}}\frac{x}{2} )_0^{\sqrt{2}}+( \frac{4}{\pi }\cos \frac{x\pi }{2\sqrt{2}} )_0^{\sqrt{2}} $

$ =( 1+2\times \frac{\pi }{4} )+\frac{4}{\pi }(0-1)=1+\frac{\pi }{2}-\frac{4}{\pi } $

$ =\frac{2\pi +{{\pi }^{2}}}{2\pi } $ Sq. units. $ \therefore $ Ratio $ =\frac{2{{\pi }^{2}}}{2\pi +{{\pi }^{2}}-8} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें