Definite Integration Question 429

Question: The value of $ \int_0^{\pi /2}{\frac{\sin x}{1+{{\cos }^{2}}x}dx} $ is

[RPET 1995]

Options:

A) $ \pi /2 $

B) $ \pi /4 $

C) $ \pi /3 $

D) $ \pi /6 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_0^{\pi /2}{\frac{\sin x}{1+{{\cos }^{2}}x}}dx $

Put $ \cos x=t $

therefore $ -\sin xdx=dt $

Then $ I=\int_1^{0}{\frac{-dt}{1+t^{2}}=\int_0^{1}{\frac{dt}{1+t^{2}}=[{{\tan }^{-1}}t]_0^{1}=\frac{\pi }{4}}} $ .