Definite Integration Question 430

Question: The area bounded by the x-axis, the curve $ y=f(x) $ , and the lines x = 1, x = b is equal to $ \sqrt{b^{2}+1}-\sqrt{2} $ for all b > l, then f(x) is

Options:

A) $ \sqrt{x-1} $

B) $ \sqrt{x+1} $

C) $ \sqrt{x^{2}+1} $

D) $ \frac{x}{\sqrt{1+x^{2}}} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Area $ =\int_1^{b}{f(x)dx=\sqrt{b^{2}+1}}-\sqrt{2} $

$ =\sqrt{b^{2}+1}-\sqrt{1+1} $

$ =| \sqrt{x^{2}+1} |_1^{b} $
$ \therefore f(x)=\frac{d}{dx}( \sqrt{x^{2}+1} )=\frac{1}{2}\frac{2x}{\sqrt{x^{2}+1}}=\frac{x}{\sqrt{x^{2}+1}} $