Definite Integration Question 432

Question: Consider two curves $ C_1:y^{2}=4[\sqrt{y}]x $ and $ C_2:x^{2}=4[\sqrt{x}]y $ , where [.] denotes the greatest integer function. Then the area of region enclosed by these two curves within the square formed by the lines x =1, y =1, x = 4, y = 4 is

Options:

A) 8/3 sq. units

B) 10/3 sq. units

C) 11/3 sq. units

D) 11/4 sq. units

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ y^{2}=4[\sqrt{y}]x $

For $ y\in [1,4][\sqrt{y}]=1 $ or $ y^{2}=4x. $

Similarly, for $ x\in [1,4),[ \sqrt{x} ]=1 $ and $ x^{2}=4\lfloor \sqrt{x} \rfloor y $ would Transform into $ x^{2}=4y. $ The required area is .

$ A=\int\limits_1^{2}{(2\sqrt{x}-1)dx+\int\limits_2^{4}{( 2\sqrt{x}-\frac{x^{2}}{4} )dx}} $

$ ={{( \frac{4}{3}{x^{3/2}}-x )}_1}^{2}+{{( \frac{4}{3}{x^{3/2}}-\frac{x^{3}}{12} )}_2}^{4}=\frac{11}{3} $ Sq. units.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें