Definite Integration Question 433

Question: The area bounded by the curve y = x $ | x | $ , x-axis and the ordinates x = 1, $ x=-1 $ is given by

Options:

A) 0

B) 1/3

C) 2/3

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Required area $ =| \int _{-1}^{0}{x|x|dx} | $

$ =| | \int _{-1}^{0}{x|x|dx} | |+| \int_1^{0}{x|x|dx}= || \int _{-1}^{0}{x^{2}dx} |+\int_0^{1}{x^{2}dx} $

$ =| [ -\frac{x^{3}}{3} ] _{-1}^{0} |-{{[ \frac{x^{3}}{3} ]}^{1}}_0=\frac{1}{3}+\frac{1}{3}+\frac{2}{3} $