Definite Integration Question 438

Question: The area bounded by the x-axis, the curve $ y=f(x) $ and the lines $ x=1,x=b $ is equal to $ \sqrt{b^{2}+1}-\sqrt{2} $ for all b > 1, then $ f(x) $ is

[MP PET 2000; AMU 2000]

Options:

A) $ \sqrt{x-1} $

B) $ \sqrt{x+1} $

C) $ \sqrt{x^{2}+1} $

D) $ \frac{x}{\sqrt{1+x^{2}}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \int_1^{b}{f(x)dx=\sqrt{b^{2}+1}-\sqrt{2}}=\sqrt{b^{2}+1}-\sqrt{1+1}=[\sqrt{x^{2}+1}]_1^{b} $

$ \therefore $ $ f(x)=\frac{d}{dx}\sqrt{x^{2}+1} $

$ =\frac{2x}{2\sqrt{x^{2}+1}}=\frac{x}{\sqrt{x^{2}+1}} $ .