Definite Integration Question 439

Question: The area enclosed by the curves $ y=sinx+cosx $ and $ y=| \text{cos }x-\text{sin }x | $ over the interval [0, $ \pi /2 $ ] is

Options:

A) 2/3 sq. units

B) 8/3 sq. units

C) 11/3 sq. units

D) 13/6 sq. units

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ A_1=\int\limits_0^{1}{( 1+\sqrt{x}-\frac{x}{4} )dx} $

$ ={{[ x+\frac{2{x^{3/2}}}{3}-\frac{x^{2}}{8} ]}_0}^{1}=1+\frac{2}{3}-\frac{1}{8}=\frac{37}{24}. $

$ A_2=\int\limits_1^{4}{( \frac{2}{\sqrt{x}}-\frac{x}{4} )dx} $

$ ={{[ 4\sqrt{x}=\frac{x^{2}}{8} ]}_1}^{4} $

$ =[ 8-2-4+\frac{1}{8} ] $

$ =\frac{17}{8} $ Or $ A=A_1+A_2=\frac{88}{24}=\frac{11}{3} $ sq. units