Definite Integration Question 440

Question: If $ I _{n}=\int_0^{\infty }{{e^{-x}}{x^{n-1}}dx,} $ then $ \int_0^{\infty }{{e^{-\lambda x}}{x^{n-1}}dx=} $

Options:

A) $ \lambda I _{n} $

B) $ \frac{1}{\lambda }I _{n} $

C) $ \frac{I _{n}}{{{\lambda }^{n}}} $

D) $ {{\lambda }^{n}}I _{n} $

Show Answer

Answer:

Correct Answer: C

Solution:

Putting $ \lambda x=t,\lambda dx=dt $

we get , $ \int_0^{\infty }{{e^{-\lambda x}}{x^{n-1}}dx} $

$ =\frac{1}{{{\lambda }^{n}}}\int_0^{\infty }{{e^{-t}}{t^{n-1}}}dt $

$ =\frac{1}{{{\lambda }^{n}}}\int_0^{\infty }{{e^{-x}}{x^{n-1}}dx=\frac{I _{n}}{{{\lambda }^{n}}}} $ .