Definite Integration Question 442

Question: The area enclosed by $ y=x^{2}+\cos x $ and its normal at $ x=\frac{\pi }{2} $ in the first quadrant is

Options:

A) $ 4(\sqrt{2}-1) $

B) $ 2\sqrt{2}(\sqrt{2}-1) $

C) $ 2(\sqrt{2}+1) $

D) $ 2\sqrt{2}(\sqrt{2}+1) $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Since $ \sin x $ and $ \cos x>0 $ for $ x\in [0,\pi /2] $ , the graph of $ y=\sin x+\cos x $ always lies above the graph of $ y=| \cos x-\sin x | $ Also $ \cos x>\sin x $ for $ x\in [0,\pi /4] $ and $ \sin x>\cos x $ for $ x\in [\pi /4,\pi /2] $
$ \Rightarrow $ Area $ =\int\limits_0^{\pi /4}{((sinx+cosx)-(cosx-sinx))dx} $

$ +\int\limits _{\pi /4}^{\pi /2}{((sinx+cosx)-(sinx-cosx))dx} $

$ =4-2\sqrt{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें