Definite Integration Question 442

Question: The area enclosed by $ y=x^{2}+\cos x $ and its normal at $ x=\frac{\pi }{2} $ in the first quadrant is

Options:

A) $ 4(\sqrt{2}-1) $

B) $ 2\sqrt{2}(\sqrt{2}-1) $

C) $ 2(\sqrt{2}+1) $

D) $ 2\sqrt{2}(\sqrt{2}+1) $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Since $ \sin x $ and $ \cos x>0 $ for $ x\in [0,\pi /2] $ , the graph of $ y=\sin x+\cos x $ always lies above the graph of $ y=| \cos x-\sin x | $ Also $ \cos x>\sin x $ for $ x\in [0,\pi /4] $ and $ \sin x>\cos x $ for $ x\in [\pi /4,\pi /2] $
$ \Rightarrow $ Area $ =\int\limits_0^{\pi /4}{((sinx+cosx)-(cosx-sinx))dx} $

$ +\int\limits _{\pi /4}^{\pi /2}{((sinx+cosx)-(sinx-cosx))dx} $

$ =4-2\sqrt{2} $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index