Definite Integration Question 443

Question: The area enclosed between the curves $ y=ax^{2} $ and $ x=ay^{2} $ (where a > 0) is 1 sq. unit, then the value of a is

Options:

A) $ \frac{{{\pi }^{5}}}{32}-\frac{{{\pi }^{4}}}{64}+\frac{{{\pi }^{3}}}{32}+1 $

B) $ \frac{{{\pi }^{5}}}{16}-\frac{{{\pi }^{4}}}{32}+\frac{{{\pi }^{3}}}{24}-1 $

C) $ \frac{{{\pi }^{5}}}{32}-\frac{{{\pi }^{4}}}{32}+\frac{{{\pi }^{3}}}{16} $

D) $ \frac{{{\pi }^{5}}}{32}-\frac{{{\pi }^{4}}}{32}+\frac{{{\pi }^{3}}}{24}+1 $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ f(x)=x^{2}+\cos x $
$ \Rightarrow f’(x)=2x-sinx $
$ \Rightarrow f’( \frac{\pi }{2} )=\pi -1 $

So, equation of normal at $ x=\frac{\pi }{2} $ is $ ( y-\frac{{{\pi }^{2}}}{4} )=\frac{1}{1-\pi }( x-\frac{\pi }{2} ) $ It meets x-axis at $ x=\frac{(\pi -1){{\pi }^{2}}}{4}+\frac{\pi }{2} $

Also, $ f’(x)=2x-\sin x>0 $ for $ x>0 $ And $ f’(x)=2x-\sin x<0 $ for $ x<0 $ So, $ f(x) $ increases for $ x\in (0,\infty ) $ and decreases for $ x\in (-\infty ,0). $

Required area =Area of OABCO + Area of $ \Delta ABC $

$ =\int\limits_0^{\pi /2}{(x^{2}+\cos x)dx+\frac{1}{2}[ \frac{(\pi -1){{\pi }^{2}}}{4}+\frac{\pi }{2}-\frac{\pi }{2} ]\times \frac{{{\pi }^{2}}}{4}} $

$ =[ \frac{x^{3}}{3}+\sin x ]_0^{\pi /2}+\frac{(\pi -1){{\pi }^{4}}}{32} $

$ =\frac{{{\pi }^{3}}}{24}+1+\frac{{{\pi }^{4}}}{32}(\pi -2) $

$ =\frac{{{\pi }^{5}}}{32}-\frac{{{\pi }^{4}}}{32}+\frac{{{\pi }^{3}}}{24}+1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें