Definite Integration Question 445

Question: The value of $ \int_0^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}dt+\int_0^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}dt}} $ is

[MP PET 2001; Orissa JEE 2005]

Options:

A) $ \frac{\pi }{2} $

B) 1

C) $ \frac{\pi }{4} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ I=\int_0^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}dt+\int_0^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt} $

Putting $ t={{\sin }^{2}}u $ in the first integral and $ t={{\cos }^{2}}v $ in the second integral, we have $ I=\int_0^{x}{u\sin 2udu-\int _{\pi /2}^{x}{v\sin 2vdv}} $

$ =\int_0^{\pi /2}{u\sin 2udu+\int _{\pi /2}^{x}{u\sin 2udu-\int _{\pi /2}^{x}{v\sin 2vdv}}} $

$ I=\int_0^{\pi /2}{u\sin 2udu=( \frac{-u\cos 2u}{2} )}_0^{\pi /2}+\frac{1}{2}\int_0^{\pi /2}{\cos 2udu} $

$ =( \frac{-u\cos 2u}{2} )_0^{\pi /2}+\frac{1}{4}(\sin 2u)_0^{\pi /2}=\frac{\pi }{4} $ .