Definite Integration Question 445

Question: The value of $ \int_0^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}dt+\int_0^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}dt}} $ is

[MP PET 2001; Orissa JEE 2005]

Options:

A) $ \frac{\pi }{2} $

B) 1

C) $ \frac{\pi }{4} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ I=\int_0^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}dt+\int_0^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}dt} $

Putting $ t={{\sin }^{2}}u $ in the first integral and $ t={{\cos }^{2}}v $ in the second integral, we have $ I=\int_0^{x}{u\sin 2udu-\int _{\pi /2}^{x}{v\sin 2vdv}} $

$ =\int_0^{\pi /2}{u\sin 2udu+\int _{\pi /2}^{x}{u\sin 2udu-\int _{\pi /2}^{x}{v\sin 2vdv}}} $

$ I=\int_0^{\pi /2}{u\sin 2udu=( \frac{-u\cos 2u}{2} )}_0^{\pi /2}+\frac{1}{2}\int_0^{\pi /2}{\cos 2udu} $

$ =( \frac{-u\cos 2u}{2} )_0^{\pi /2}+\frac{1}{4}(\sin 2u)_0^{\pi /2}=\frac{\pi }{4} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें