Definite Integration Question 449

Question: $ I _{n}=\int _{0}^{\pi /4}{{{\tan }^{n}}xdx} $ , then $ \underset{n-\infty }{\mathop{\lim }}n[I _{n}+{I _{n-2}}] $ equals

[AIEEE 2002]

Options:

A) 1/2

B) 1

C) $ \infty $

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

$ I _{n}=\int_0^{\pi /4}{{{\tan }^{n}}x}dx=\int_0^{\pi /4}{({{\sec }^{2}}x-1){{\tan }^{n-2}}xdx} $

$ =\int_0^{\pi /4}{{{\sec }^{2}}x{{\tan }^{n-2}}}xdx-\int_0^{\pi /4}{{{\tan }^{n-2}}}xdx $

$ =[ \frac{{{\tan }^{n-1}}x}{n-1} ]_0^{\pi /4}-{I _{n-2}} $

therefore $ I _{n}+{I _{n-2}}=\frac{1}{n-1} $

Now, $ \underset{n\to \infty }{\mathop{\lim }}n[I _{n}+{I _{n-2}}] $

$ =\underset{n\to \infty }{\mathop{\lim }}\frac{n}{n-1} $ = $ \underset{n\to \infty }{\mathop{\lim }}\frac{1}{1-\frac{1}{n}}=1 $ .