Definite Integration Question 45

Question: The part of straight line $ y=x+1 $ between $ x=2 $ and $ x=3 $ is revolved about x-axis, then the curved surface of the solid thus generated is

[UPSEAT 2000]

Options:

A) $ 37\pi /3 $

B) $ 7\pi \sqrt{2} $

C) $ 37\pi $

D) $ y=x^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Curved surface $ =\int_a^{b}{2\pi y\sqrt{[ 1+{{( \frac{dy}{dx} )}^{2}} ]}dx} $

Given that $ a=2, $

$ b=3 $ and $ y=x+1 $ .

On differentiating with respect to $ x $ ,

$ \frac{dy}{dx}=1+0or\frac{dy}{dx}=1 $

Therefore, curved surface $ =\int_2^{3}{2\pi (x+1)\sqrt{[1+{{(1)}^{2}}]}dx} $

$ =\int_2^{3}{2\pi (x+1)\sqrt{2}}dx $

$ =2\sqrt{2}\pi \int_2^{3}{(x+1)}dx $

$ =2\sqrt{2}\pi [ \frac{{{(x+1)}^{2}}}{2} ]_2^{3} $

$ =\frac{2\sqrt{2}}{2}\pi [{{(3+1)}^{2}}-{{(2+1)}^{2}}]=\sqrt{2}\pi (16-9)=7\sqrt{2}\pi =7\pi \sqrt{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें