Definite Integration Question 450

Question: $ \int_0^{\pi }{x{{\sin }^{3}}xdx}= $

[CEE 1993]

Options:

A) $ \frac{4\pi }{3} $

B) $ \frac{2\pi }{3} $

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ I=\int_0^{\pi }{x{{\sin }^{3}}xdx} $ ……(i) Also $ I=\int_0^{\pi }{(\pi -x){{\sin }^{3}}xdx} $

…..(ii)

Adding (i) and (ii), we get $ 2I=\pi \int_0^{\pi }{{{\sin }^{3}}x}dx=\frac{\pi }{4}\int_0^{\pi }{{3\sin x-\sin 3x}dx} $

$ =\frac{\pi }{4}[ -3\cos x+\frac{\cos 3x}{3} ]_0^{\pi }=\frac{\pi }{4}[ 3-\frac{1}{3}+3-\frac{1}{3} ]=\frac{4\pi }{3} $

Hence, $ I=\frac{2\pi }{3} $ .