Definite Integration Question 451
Question: $ \int _{-2}^{2}{|1-x^{2}|dx=} $
[IIT 1989; BIT Mesra 1996; Kurukshetra CEE 1998; MP PET 2002; Kerala (Engg.) 2002]
Options:
2
4
6
8
Show Answer
Answer:
Correct Answer: B
Solution:
$ f(2a-x)=f(x) $
$ +\int_1^{2}{|1-x^{2}|dx} $
= $ -\int _{-2}^{-1}{(1-x^{2})dx+\int _{-1}^{1}{(1-x^{2})dx-\int_1^{2}{(1-x^{2})dx}}} $
$ \frac{4}{3}+\frac{4}{3}+\frac{4}{3} $ = $ \frac{12}{3} $.