Definite Integration Question 453

Question: $ \int_0^{\pi /2}{\frac{x\sin x\cos x}{{{\cos }^{4}}x+{{\sin }^{4}}x}}dx= $

[IIT 1985]

Options:

A) 0

B) $ \frac{\pi }{8} $

C) $ \frac{{{\pi }^{2}}}{8} $

D) $ \frac{{{\pi }^{2}}}{16} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int_0^{\pi /2}{\frac{x\sin x\cos x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} $

…..(i) $ =\int_0^{\pi /2}{\frac{( \frac{\pi }{2}-x )\cos x\sin x}{{{\sin }^{4}}x+{{\cos }^{4}}x}} $ …..(ii) By adding (i) and (ii), we get $ 2I=\frac{\pi }{2}\int_0^{\pi /2}{\frac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}} $ dx

therefore $ I=\frac{\pi }{4}\int_0^{\pi /2}{\frac{\tan x{{\sec }^{2}}x}{1+{{\tan }^{4}}x}dx} $

Now, Put $ {{\tan }^{2}}x=t $ , we get $ I=\frac{\pi }{8}\int_0^{\infty }{\frac{dt}{1+t^{2}}=\frac{\pi }{8}[{{\tan }^{-1}}t]_0^{\infty }=\frac{{{\pi }^{2}}}{16}} $ .