Definite Integration Question 454

Question: The correct evaluation of $ \int_0^{\pi /2}{| \sin ( x-\frac{\pi }{4} ) |dx} $ is

[MP PET 1993]

Options:

A) $ 2+\sqrt{2} $

B) $ 2-\sqrt{2} $

C) $ -2+\sqrt{2} $

D) 0

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ I=\int_0^{\pi /2}{| \sin ( x-\frac{\pi }{4} ) |}dx $

$ x-\frac{\pi }{4} $ is -ve when $ x\le \frac{\pi }{4} $ and +ve when $ x>\frac{\pi }{4} $

$ =-\int_0^{\pi /4}{\sin ( x-\frac{\pi }{4} )dx+\int _{\pi /4}^{\pi /2}{\sin ( x-\frac{\pi }{4} )dx}} $

$ =2-\sqrt{2} $ .