Definite Integration Question 458

Question: If $ I_1=\int_0^{1}{{2^{x^{2}}}dx,\ }I_2=\int_0^{1}{{2^{x^{3}}}dx},\ I_3=\int_1^{2}{{2^{x^{2}}}dx} $ , $ I_4=\int_1^{2}{{2^{x^{3}}}dx} $ , then

[AIEEE 2005]

Options:

A) $ I_3=I_4 $

B) $ I_3>I_4 $

C) $ I_2>I_1 $

D) $ I_1>I_2 $

Show Answer

Answer:

Correct Answer: D

Solution:

For $ 0<x<1 $ , we have $ x^{2}>x^{3} $ and for $ 1<x<2 $ , we have $ x^{3}>x^{2} $

$ \therefore $ $ {2^{x^{2}}}>{2^{x^{3}}} $ for $ 0<x<1 $ and $ {2^{x^{2}}}<{2^{x^{3}}} $ for $ 1<x<2 $

$ \therefore $ $ \int_0^{1}{{2^{x^{2}}}dx>}\int_0^{1}{{2^{x^{3}}}dx} $ and $ \int_1^{2}{{2^{x^{2}}}dx<\int_1^{2}{{2^{x^{3}}}dx}} $
$ \therefore $ $ I_1>I_2 $ and $ I_3<I_4 $ .