Definite Integration Question 46

Question: $ \int_0^{\pi }{x}f(\sin x)dx= $

[IIT 1982; Kurukshetra CEE 1993]

Options:

A) $ \pi \int_0^{\pi }{f(\sin x)dx} $

B) $ \frac{\pi }{2}\int_0^{\pi }{f(\sin x)dx} $

C) $ \frac{\pi }{2}\int_0^{\pi /2}{f(\sin x)dx} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_0^{\pi }{x}f(\sin x)dx=\frac{\pi }{2}\int_0^{\pi }{f(\sin x)dx} $

Since $ \int_0^{a}{xf(x)dx=\frac{1}{2}a\int_0^{a}{f(x)dx,}} $ if $ f(a-x)=f(x) $ .