Definite Integration Question 464

Question: $ \int_0^{\pi }{\frac{x\tan x}{\sec x+\tan x}}dx= $

[MNR 1984]

Options:

A) $ \frac{\pi }{2}-1 $

B) $ \pi ( \frac{\pi }{2}+1 ) $

C) $ \frac{\pi }{2}+1 $

D) $ \pi ( \frac{\pi }{2}-1 ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int_0^{\pi }{\frac{x\tan x}{\sec x+\tan x}dx=\int_0^{\pi }{\frac{(\pi -x)\tan (\pi -x)}{\sec (\pi -x)+\tan (\pi -x)}}dx} $

therefore $ 2I=\frac{\pi }{2}\int_0^{\pi }{\frac{\tan x}{\sec x+\tan x}dx=\frac{\pi }{2}\int_0^{\pi }{\frac{\sin x}{1+\sin x}dx}} $

= $ \frac{\pi }{2}[ \int_0^{\pi }{1dx-\int_0^{\pi }{\frac{dx}{1+\sin x}}} ] $

On solving, we get $ I=\frac{{{\pi }^{2}}}{2}-\pi =\pi ( \frac{\pi }{2}-1 ) $ .