Definite Integration Question 467

Question: For any integer $ n, $ the integral $ \int_0^{\pi }{{e^{{{\sin }^{2}}x}}{{\cos }^{3}}(2n+1)xdx=} $

[MNR 1982]

Options:

A) $ -1 $

B) 0

C) 1

D) $ \pi $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ f(x)=\int_0^{\pi }{{e^{{{\sin }^{2}}x}}{{\cos }^{3}}(2n+1)x.dx} $

Since $ \cos (2n+1)(\pi -x)=\cos [(2n+1)\pi -(2n+1)x] $

$ =-\cos (2n+1)x $ and $ {{\sin }^{2}}(\pi -x)={{\sin }^{2}}x $

Hence by the property of definite integral, $ \int_0^{\pi }{{e^{{{\sin }^{2}}x}}{{\cos }^{3}}(2n+1)xdx=0} $ , $ [f(2a-x)=-f(x)] $ .