Definite Integration Question 468

Question: $ \int _{1/e}^{e}{|\log x|dx=} $

[UPSEAT 2001]

Options:

A) $ 1-\frac{1}{e} $

B) $ 2( 1-\frac{1}{e} ) $

C) $ {e^{-1}}-1 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int _{1/e}^{e}{|\log x|dx=\int _{1/e}^{1}{-\log xdx+\int_1^{e}{\log xdx}}} $

$ =[x-x\log x] _{1/e}^{1}+[x\log x-x]_1^{e} $

$ =(1-0)-{ \frac{1}{e}-\frac{1}{e}(-1) }+e-e+1 $

$ =2-\frac{2}{e}=2( 1-\frac{1}{e} ) $ .