Definite Integration Question 474

Question: The value of the integral $ I=\int _{0}^{1}{x{{(1-x)}^{n}}dx} $ is

[AIEEE 2003]

Options:

A) $ \frac{1}{n+1} $

B) $ \frac{1}{n+2} $

C) $ \frac{1}{n+1}-\frac{1}{n+2} $

D) $ \frac{1}{n+1}+\frac{1}{n+2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ I=\int_0^{1}{x{{(1-x)}^{n}}dx} $

$ -I=\int_0^{1}{-x{{(1-x)}^{n}}dx=\int_0^{1}{(1-x-1){{(1-x)}^{n}}dx}} $

$ =\int_0^{1}{{{(1-x)}^{n+1}}dx-\int_0^{1}{{{(1-x)}^{n}}dx}} $

$ =[ \frac{{{(1-x)}^{n+2}}}{-(n+2)} ]_0^{1}-[ \frac{{{(1-x)}^{n+1}}}{-(n+1)} ]_0^{1}=\frac{1}{n+2}-\frac{1}{n+1} $

$ \Rightarrow I=\frac{1}{n+1}-\frac{1}{n+2}. $