Definite Integration Question 476

Question: If $ f(x) $ is a continuous periodic function with period $ T, $ then the integral $ I=\int_a^{a+T}{f(x)dx} $ is

Options:

A) Equal to $ 2a $

B) Equal to $ 3a $

C) Independent of $ a $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Consider the function $ g(a)=\int_a^{a+T}{f(x)dx} $

$ =\int_a^{0}{f(x)dx+\int_0^{T}{f(x)dx+\int_T^{a+T}{f(x)dx}}} $

Putting $ x-T=y $ in last integral, we get $ \int_T^{a+T}{f(x)dx=\int_0^{a}{f(y+T)dy=\int_0^{a}{f(y)dy}}} $

therefore $ g(a)=\int_a^{0}{f(x)dx+\int_0^{1}{f(x)dx+\int_0^{a}{f(x)dx}}} $

$ =\int_0^{T}{f(x)dx} $

Hence g is independent of a.