Definite Integration Question 477

Question: If $ \int_0^{\pi }{xf({{\cos }^{2}}x+{{\tan }^{4}}x)dx} $

$ =k\int_0^{\pi /2}{f({{\cos }^{2}}x+{{\tan }^{4}}x)dx,} $ then the value of $ k $ is

Options:

A) $ \frac{\pi }{2} $

B) $ \pi $

C) $ -\frac{\pi }{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_0^{\pi }{xf}({{\cos }^{2}}x+{{\tan }^{4}}x)dx=k\int_0^{^{\pi /2}}{f({{\cos }^{2}}x+{{\tan }^{4}}x)dx} $

By the property of definite integral $ I=\int_0^{\pi }{x}f({{\cos }^{2}}x+{{\tan }^{4}}x)dx $ ……(i) $ =\int_0^{\pi }{(\pi -x)f({{\cos }^{2}}x+{{\tan }^{4}}x)dx} $ ……(ii)

Adding (i) and (ii), we have $ 2I=\pi \int_0^{\pi }{f({{\cos }^{2}}x+{{\tan }^{4}}x)dx} $

therefore $ 2I=2\pi \int_0^{\pi /2}{f({{\cos }^{2}}x+{{\tan }^{4}}x)dx} $

therefore $ I=\pi \int_0^{\pi /2}{f({{\cos }^{2}}x+{{\tan }^{4}}x)dx} $

On comparing with given integral, we get $ k=\pi $ .