Definite Integration Question 479

Question: The value of $ \int_0^{\pi /2}{\frac{dx}{1+{{\tan }^{3}}x}} $ is

[IIT 1993; DCE 2000, 01]

Options:

A) 0

B) 1

C) $ \frac{\pi }{2} $

D) $ \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int_0^{\pi /2}{\frac{dx}{1+{{\tan }^{3}}x}=\int_0^{\pi /2}{\frac{{{\cos }^{3}}x}{{{\sin }^{3}}x+\cos x^{3}}}}dx $ …..(i) $ =\int_0^{\pi /2}{\frac{{{\sin }^{3}}x}{{{\cos }^{3}}x+{{\sin }^{3}}x}dx} $ ……(ii)

Adding (i) and (ii), we get $ 2I=\int_0^{\pi /2}{dx\Rightarrow I=\frac{\pi }{4}.} $