Definite Integration Question 480

Question: The value of $ \int _{\pi /4}^{3\pi /4}{\frac{\varphi }{1+\sin \varphi }d\varphi ,} $ is

[AI CBSE 1990; IIT 1993]

Options:

A) $ \pi \tan \frac{\pi }{8} $

B) $ \log \tan \frac{\pi }{8} $

C) $ \tan \frac{\pi }{8} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int _{\pi /4}^{3\pi /4}{\frac{\varphi }{1+\sin \varphi }d\varphi }=\int _{\pi /4}^{3\pi /4}{\frac{\pi -\varphi }{1+\sin (\pi -\varphi )}d\varphi } $

$ { \because \frac{\pi }{4}+\frac{3\pi }{4}=\pi } $

therefore $ 2I=\int _{\pi /4}^{3\pi /4}{\frac{\pi }{1+\sin \varphi }d\varphi } $

On simplification, we get $ I=\pi (\sqrt{2}-1)=\pi \tan \frac{\pi }{8}. $