Definite Integration Question 482

Question: If $ f(a+b-x)=f(x), $ then $ \int_a^{b}{xf(x)dx=} $

[CEE 1993; AIEEE 2003]

Options:

A) $ \frac{a+b}{2}\int_a^{b}{f(b-x)dx} $

B) $ \frac{a+b}{2}\int_a^{b}{f(x)dx} $

C) $ \frac{b-a}{2}\int_a^{b}{f(x)dx} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Since $ I=\int_a^{b}{xf(x)dx=\int_a^{b}{(a+b-x)f(a+b-x)dx}} $

therefore $ I=\int_a^{b}{(a+b)}f(x)dx-\int_a^{b}{xf(x)dx} $

$ { \because f(a+b-x)=f(x)given } $

therefore $ 2I=(a+b)\int_a^{b}{f(x)dx} $

therefore $ I=\int_a^{b}{xf(x)dx=\frac{a+b}{2}\int_a^{b}{f(x)dx}} $ .