Definite Integration Question 484

Question: Area enclosed between the curve $ y^{2}(2a-x)=x^{3} $ and line $ x=2a $ above x-axis is

[MP PET 2001]

Options:

A) $ \pi a^{2} $

B) $ \frac{3\pi a^{2}}{2} $

C) $ 2\pi a^{2} $

D) $ 3\pi a^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Curve $ y^{2}(2a-x)=x^{3} $ is symmetrical about x-axis and passes through origin. Also $ \frac{x^{3}}{2a-x}<0 $ for $ x>2a $ or $ x<0 $ . So curve does not lie in $ x>2a $ and $ x<0, $ curve lies wholly on $ 0\le x\le 2a $ .

$ \therefore $ Area $ =\int_0^{2a}{\frac{{x^{3/2}}}{\sqrt{2a-x}}dx} $

$ =\int_0^{\pi /2}{8a^{2}{{\sin }^{4}}\theta d\theta } $ , (Put $ x=2a{{\sin }^{2}}\theta ) $

$ =8a^{2}[ \frac{3}{4}.\frac{1}{2}.\frac{\pi }{2} ] $

$ =\frac{3\pi a^{2}}{2} $ , (Applying Gamma function).



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें