Definite Integration Question 484

Question: Area enclosed between the curve $ y^{2}(2a-x)=x^{3} $ and line $ x=2a $ above x-axis is

[MP PET 2001]

Options:

A) $ \pi a^{2} $

B) $ \frac{3\pi a^{2}}{2} $

C) $ 2\pi a^{2} $

D) $ 3\pi a^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

Curve $ y^{2}(2a-x)=x^{3} $ is symmetrical about x-axis and passes through origin. Also $ \frac{x^{3}}{2a-x}<0 $ for $ x>2a $ or $ x<0 $ . So curve does not lie in $ x>2a $ and $ x<0, $ curve lies wholly on $ 0\le x\le 2a $ .

$ \therefore $ Area $ =\int_0^{2a}{\frac{{x^{3/2}}}{\sqrt{2a-x}}dx} $

$ =\int_0^{\pi /2}{8a^{2}{{\sin }^{4}}\theta d\theta } $ , (Put $ x=2a{{\sin }^{2}}\theta ) $

$ =8a^{2}[ \frac{3}{4}.\frac{1}{2}.\frac{\pi }{2} ] $

$ =\frac{3\pi a^{2}}{2} $ , (Applying Gamma function).