Definite Integration Question 49

Question: $ \int _{-\frac{1}{2}}^{\frac{1}{2}}{\cos x\ln \frac{1+x}{1-x}dx} $ is equal to

[AMU 2000]

Options:

A) 0

B) 1

C) 2

D) ln 3

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int _{-1/2}^{1/2}{\cos x\ln ( \frac{1+x}{1-x} )dx} $

$ \cos x\ln ( \frac{1+x}{1-x} ) $ is an odd function, $ (\because $

$ f(-x)=-f(x) $ ) $ I=0 $ .