Definite Integration Question 493

Question: The value of $ \int_2^{3}{\frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}}}dx $ is

[IIT 1994; Kurukshetra CEE 1998]

Options:

A) 1

B) 0

C) $ -1 $

D) $ \frac{1}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int_2^{3}{\frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}}dx} $ ……(i) Using the property $ I=\int_a^{b}{f(x)dx=\int_a^{b}{f(a+b-x)}dx} $

i.e., change in $ x=(2+3-x)=5-x $ or $ dx=-dx $
$ \therefore I=\int_3^{2}{\frac{\sqrt{5-x}}{\sqrt{x}+\sqrt{5-x}}}(-dx) $

$ =\int_2^{3}{\frac{\sqrt{5-x}}{\sqrt{5-x}+\sqrt{x}}dx} $ …..(ii)

Adding (i) and (ii), $ 2I=\int_2^{3}{\frac{\sqrt{x}+\sqrt{5-x}}{\sqrt{5-x}+\sqrt{x}}dx=\int_2^{3}{1dx}} $

$ =[x]_2^{3}=3-2=1\Rightarrow I=\frac{1}{2} $ .