Definite Integration Question 497

Question: $ \int_0^{a}{x^{2}\sin x^{3}dx} $ equals

[RPET 1996]

Options:

A) $ (1-\cos a^{3}) $

B) $ 3(1-\cos a^{3}) $

C) $ -\frac{1}{3}(1-\cos a^{3}) $

D) $ \frac{1}{3}(1-\cos a^{3}) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int_0^{a}{x^{2}\sin x^{3}dx} $ ; Put $ x^{3}=t\Rightarrow x^{2}dx=\frac{dt}{3} $

$ \therefore I=\frac{1}{3}\int_0^{a^{3}}{\sin tdt}=-\frac{1}{3}[\cos t]_0^{a^{3}}=-\frac{1}{3}[\cos a^{3}-1] $

$ =\frac{1}{3}[1-\cos a^{3}] $ .