Definite Integration Question 5

Question: If $ \int _{-1}^{4}{f(x)dx}=4 $ and $ \int_2^{4}{(3-f(x))dx=7,} $ then the value of $ \int_2^{-1}{f(x)dx} $ is

Options:

A) 2

B) - 3

C) - 5

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ \int_2^{4}{(3-f(x))dx=7\Rightarrow 6-\int_2^{4}{f(x)dx=7}} $

therefore $ \int_2^{4}{f(x)dx=-1} $ . Now, $ \int_2^{-1}{f(x)dx=-\int _{-1}^{2}{f(x)dx=-[ \int _{-1}^{4}{f(x)dx+\int_4^{2}{f(x)dx}} ]}} $

$ =-[ \int _{-1}^{4}{f(x)dx-\int_2^{4}{f(x)dx}} ]=-(4+1)=-5 $ .