Definite Integration Question 50

Question: The value of $ \int _{{e^{-1}}}^{e^{2}}{| \frac{{\log _{e}}x}{x} |dx} $ is

[IIT Screening 2000]

Options:

A) $ \frac{3}{2} $

B) $ \frac{5}{2} $

C) 3

D) 5

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int _{{e^{-1}}}^{e^{2}}{| \frac{{\log _{e}}x}{x} |dx=\int _{{e^{-1}}}^{1}{| \frac{{\log _{e}}x}{x} |dx+\int_1^{e^{2}}{| \frac{{\log _{e}}x}{x} |dx}}} $

$ =\int _{{e^{-1}}}^{1}{-\frac{\log x}{x}dx+\int_1^{e^{2}}{\frac{\log x}{x}dx}} $

$ =\int _{-1}^{0}{-zdz+\int_0^{2}{zdz}} $ , (Putting $ {\log _{e}}x=z $

therefore $ (1/x)dx=dz) $

$ =[ -\frac{z^{2}}{2} ] _{-1}^{0}+[ \frac{z^{2}}{2} ]_0^{2}=\frac{1}{2}+2=\frac{5}{2} $ .F