Definite-Integration Question 514

Question: $ \int_0^{\infty }{\frac{x,dx}{(1+x)(1+x^{2})}}= $

Options:

A) $ \frac{\pi }{4} $

B) $ \frac{\pi }{3} $

C) $ \frac{\pi }{6} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int_0^{\infty }{\frac{xdx}{(1+x)(1+x^{2})}} $ Put $ x=\tan \theta $ , we get $ I=\int_0^{\pi /2}{\frac{\tan \theta }{1+\tan \theta }d\theta =\int_0^{\pi /2}{\frac{\sin \theta }{\cos \theta +\sin \theta }d\theta =\frac{\pi }{4}}} $ .