Definite-Integration Question 519

Question: $ \int_0^{\infty }{{e^{-2x}}(\sin 2x+\cos 2x),dx=} $

Options:

A) 1

B) 0

C) $ \frac{1}{2} $

D) $ \infty $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_0^{\infty }{{e^{-2x}}(\sin 2x+\cos 2x)dx} $ $ =[ -{e^{-x}}\frac{\cos 2x}{2} ]_0^{\infty }-\int_0^{\infty }{( -2{e^{-2x}} ),}( \frac{-\cos 2x}{2} )dx $ $ +\int_0^{\infty }{{e^{-2x}}\cos 2x,dx} $ $ =\frac{1}{2} $ .