Definite Integration Question 52

Question: If $ f:R\to R $ and $ g:R\to R $ are one to one, real valued functions, then the value of the integral $ \int _{-\pi }^{\pi }{[f(x)+f(-x)][g(x)-g(-x)]dx} $ is

[DCE 2001; MP PET 2004]

Options:

A) 0

B) $ \frac{8}{3} $

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ \varphi (x)=[f(x)+f(-x)][g(x)-g(-x)] $

then, $ \varphi (-x)=[f(-x)+f(x)][g(-x)-g(x)] $

$ \therefore \int _{-\pi }^{\pi }{\varphi (x)dx=0} $

therefore $ \int _{-\pi }^{\pi }{[f(x)+f(-x)][g(x)-g(-x)]dx=0} $ .