Definite Integration Question 53

Question: $ \int_0^{\pi /2}{e^{x}\sin xdx=} $

[Roorkee 1978]

Options:

A) $ \frac{1}{2}({e^{\pi /2}}-1) $

B) $ \frac{1}{2}({e^{\pi /2}}+1) $

C) $ \frac{1}{2}(1-{e^{\pi /2}}) $

D) $ 2({e^{\pi /2}}+1) $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ I=\int_0^{\pi /2}{e^{x}\sin xdx} $

= $ -[e^{x}\cos x]_0^{\pi /2}+\int_0^{\pi /2}{e^{x}\cos xdx} $

$ =-[e^{x}\cos x]_0^{\pi /2}+[e^{x}\sin x]_0^{\pi /2}-\int_0^{\pi /2}{e^{x}\sin xdx} $

$ \therefore $ $ 2I=[e^{x}(\sin x-\cos x)]_0^{\pi /2}=({e^{\pi /2}}+1) $

Hence $ \int_0^{\pi /2}{e^{x}\sin xdx=\frac{1}{2}({e^{\pi /2}}+1)} $ .