Definite-Integration Question 536
Question: If $ f(t)=\int_{,-t}^{,t}{\frac{dx}{1+x^{2}},} $ then $ {f}’(1) $ is
[Roorkee 2000]
Options:
A) Zero
B) 2/3
C) $ -,1 $
D) 1
Show Answer
Answer:
Correct Answer: D
Solution:
Given  $ f(t)=\int_{-t}^{t}{\frac{dx}{1+x^{2}}} $   $ =[{{\tan }^{-1}}x]_{-t}^{t} $  $ =2{{\tan }^{-1}}t $             Differentiating with respect to t,  $ {f}’(t)=\frac{2}{1+t^{2}} $                               
Þ  $ f’(1)=\frac{2}{2}=1 $ .
 BETA
  BETA 
             
             
           
           
           
          