Definite-Integration Question 537

Question: If $ F(x)=\int_{x^{2}}^{x^{3}}{\log t,dt,(x>0),} $ then $ {F}’(x)= $

[MP PET 2001]

Options:

A) $ (9x^{2}-4x)\log x $

B) $ (4x-9x^{2})\log x $

C) $ (9x^{2}+4x)\log x $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ F(x)=\int_{x^{2}}^{x^{3}}{\log t,dt} $ Applying Leibnitz?s theorem, $ F,’(x)=\log x^{3}.\frac{d}{dx}x^{3}-\log x^{2}.\frac{d}{dx}x^{2} $ $ =3\log x.3x^{2}-2\log x.2x $ $ =(9x^{2}-4x)\log x $ .