Definite-Integration Question 545

Question: Let $ \frac{d}{dx}F(x)=( \frac{{e^{\sin x}}}{x} ),;,x>0 $ . If $ \int_{,1}^{,4}{\frac{3}{x}{e^{\sin x^{3}}}dx=F(k)-F(1)} $ , then one of the possible value of k, is

[AIEEE 2003]

Options:

A) 15

B) 16

C) 63

D) 64

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{d}{dx}F(x)=\frac{{e^{\sin x}}}{x} $
$ \Rightarrow \int_{,1}^{,4}{\frac{3}{x}{e^{\sin x^{3}}}dx=\int_{,1}^{,4}{\frac{3x^{2}}{x^{3}}{e^{\sin x^{3}}}dx}} $ Put $ x^{3}=t,\Rightarrow 3,x^{2}dx=dt $ $ F(t)=\int_1^{64}{\frac{{e^{\sin t}}}{t},}dt=\int_1^{64}{F(t)dt=F(64)-F(1)}, $ On comparing, $ k=64. $