Definite-Integration Question 546

Question: If $ f(x)=\int_0^{x}{t\sin t,dt,,} $ then $ {f}’(x)= $

[MNR 1982; Karnataka CET 1999]

Options:

A) $ \cos x+x\sin x $

B) $ x\sin x $

C) $ x\cos x $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Since, $ f(x)=\int_0^{x}{t\sin tdt} $ .Now, according to Leibnitz’s rule, $ {f}’(x)=x,\sin x.(1)-0=x\sin x $ .