Definite-Integration Question 546
Question: If $ f(x)=\int_0^{x}{t\sin t,dt,,} $ then $ {f}’(x)= $
[MNR 1982; Karnataka CET 1999]
Options:
A) $ \cos x+x\sin x $
B) $ x\sin x $
C) $ x\cos x $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
Since, $ f(x)=\int_0^{x}{t\sin tdt} $ .Now, according to Leibnitz’s rule, $ {f}’(x)=x,\sin x.(1)-0=x\sin x $ .