Definite Integration Question 56

Question: $ \int _{1}^{x}{\frac{\log x^{2}}{x}dx=} $

[DCE 1999]

Options:

A) $ {{(\log x)}^{2}} $

B) $ \frac{1}{2}{{(\log x)}^{2}} $

C) $ \frac{\log x^{2}}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ I=\int_1^{x}{\frac{2\log x}{x}dx} $

Let $ \log x=t $

therefore $ \frac{dx}{x}=dt $

$ \therefore I=2\int_0^{\log x}{tdt=2[ \frac{t^{2}}{2} ]}_0^{\log x}={{(\log x)}^{2}} $ .