Definite Integration Question 58

Question: $ \int _{-1}^{1}{\log (x+\sqrt{x^{2}+1})dx=} $

[MP PET 2001]

Options:

A) 0

B) log 2

C) $ \log \frac{1}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ f(x)=\log (x+\sqrt{1+x^{2}}) $

Now, $ f(-x)=\log ( \sqrt{1+x^{2}}-x )=\log (\sqrt{1+x^{2}}-x).\frac{(\sqrt{1+x^{2}}+x)}{(\sqrt{1+x^{2}}+x)} $

$ =\log \frac{[(1+x^{2})-x^{2}]}{(\sqrt{1+x^{2}}+x)} $

$ =\log 1-\log (\sqrt{1+x^{2}}+x) $

$ =-\log (\sqrt{1+x^{2}}+x) $

$ =-f(x) $

Hence, $ \int _{-1}^{1}{\log (x+\sqrt{1+x^{2}})=0} $ , $ [ \because \int _{-a}^{a}{f(x)=0,}\text{if }f(-x)=-f(x) ] $ .