Definite Integration Question 59

Question: The value of the integral $ \int _{-\pi }^{\pi }{{{(\cos ax-\sin bx)}^{2}}dx} $ , (a and b are integer) is

[UPSEAT 2001]

Options:

A) $ -\pi $

B) 0

C) $ \pi $

D) $ 2\pi $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I=\int _{-\pi }^{\pi }{{{(\cos ax-\sin bx)}^{2}}dx} $

$ I=\int _{-\pi }^{\pi }{({{\cos }^{2}}ax+{{\sin }^{2}}bx-2\cos ax\sin bx)dx} $

$ I=\int _{-\pi }^{\pi }{({{\cos }^{2}}ax+{{\sin }^{2}}bx)dx}-\int _{-\pi }^{\pi }{2\cos ax\sin bxdx} $

$ I=2\int_0^{\pi }{({{\cos }^{2}}ax+{{\sin }^{2}}bx)dx}-0 $

$ I=2\int_0^{\pi }{( \frac{1+\cos 2ax}{2}+\frac{1-\cos 2bx}{2} )dx} $

$ I=\int_0^{\pi }{( 2+\cos 2ax-\cos 2bx )dx}=2\pi . $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें