Definite Integration Question 62

Question: $ \int _{0}^{\pi }{\sqrt{\frac{1+\cos 2x}{2}}dx} $ is equal to

[AMU 2001]

Options:

A) 0

B) 2

C) 1

D) $ -1 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ I=\int_0^{\pi }{\sqrt{\frac{1+\cos 2x}{2}}dx=\int_0^{\pi }{|\cos x|dx}} $

$ I=\int _{0}^{\pi /2}{\cos xdx}-\int _{\pi /2}^{\pi }{\cos xdx}=[\sin x] _0^{\pi /2}-[\sin x] _{\pi /2}^{\pi } $

$ I=[ \sin \frac{\pi }{2}-\sin 0 ]-[ \sin \pi -\sin \frac{\pi }{2} ] $ = 1 + 1 = 2.