Definite Integration Question 68

Question: If $ I _{n}=\int_0^{\pi /4}{{{\tan }^{n}}\theta d\theta ,} $ then $ I_8+I_6 $ equals

[Kurukshetra CEE 1996]

Options:

A) $ \frac{1}{4} $

B) $ \frac{1}{5} $

C) $ \frac{1}{6} $

D) $ \frac{1}{7} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ I _{n}=\int_0^{\pi /4}{({{\sec }^{2}}\theta }-1){{\tan }^{n-2}}\theta d\theta $

$ I _{n}=\int_0^{\pi /4}{{{\sec }^{2}}\theta {{\tan }^{n-2}}\theta d\theta }-\int_0^{\pi /2}{{{\tan }^{n-2}}\theta }d\theta $

$ I _{n}=[ \frac{{{\tan }^{n-1}}\theta }{n-1} ]_0^{\pi /4}-{I _{n-2}}\Rightarrow I _{n}+{I _{n-2}}=\frac{1}{n-1} $

Hence $ I_8+I_6=\frac{1}{8-1}=\frac{1}{7} $ .