Definite Integration Question 70

Question: $ \int _{0}^{1000}{{e^{x-[x]}}dx} $ is

[AMU 2002]

Options:

A) $ e^{1000}-1 $

B) $ \frac{e^{1000}-1}{e-1} $

C) $ 1000(e-1) $

D) $ \frac{e-1}{1000} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ {e^{x-[x]}} $ is a periodic function with period 1.
$ \therefore \int_0^{1000}{{e^{x-[x]}}dx=1000\int_0^{1}{{e^{x-[x]}}dx}} $ , $ [\because [x]=0,if0<x<1] $

$ =1000[e^{x}]_0^{1} $

$ =1000(e-1) $ .